Hybrid Switch for OVP/OCP and Communication

Features

- Input voltage range: 3.6V ~ 28V
- Both IN and ISNS may supply the chip
- Low on-resistance for IN-OUT: typical 40mΩ
- IN-COM for 115.2Kbps bit rate Communication with level shift function
- Over voltage protection: Default 6V
- Super-fast OVP response time: typical 50ns
- Programmable Over Current Protection
- Short Circuit Protection
- Over Temperature Protection with external NTC
- Tiny 6-bumps WLCSP 1.17mm x 0.815mm

Applications

Smart Phone, AR/VR Device, Tablet PC, Wearable etc.

General Description

YHM2010N over-voltage protection devices feature a low $40m\Omega$ (TYP) on-resistance high current integrated MOSFET which actively protect low-voltage systems against voltage supply faults up to +28VDC. An input voltage exceeding the over-voltage threshold will cause the internal MOSFET to turn off, preventing excessive voltage from damaging downstream devices.

The over-voltage protection threshold is default 6V. There are other trim versions for 11V/16V/22V OVP and no OVP. YHM2010N device enters hiccup mode when the output load exceeds the over current threshold. The over current threshold is programed by $R_{\rm SNS}$.

YHM2010N has two outputs, OUT supports 2A current for power supply, COM supports 115.2Kbps digital signal communication with level shift function when the chip is powered by ISNS pin.

YHM2010N has an NTC pin to support over Temperature Protection. It turns off when detected ambient temperature via external NTC resistor exceeds a preprogrammed threshold. Once turned off, it cannot be turned on until VIN is disconnected and reconnected again.

YHM2010N is available in tiny 6-bumps WLCSP 1.17mm x 0.815mm, 0.4mm pitch, and operates over an ambient temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C.

Hybrid Switch for OVP/OCP and Communication

Typical Application

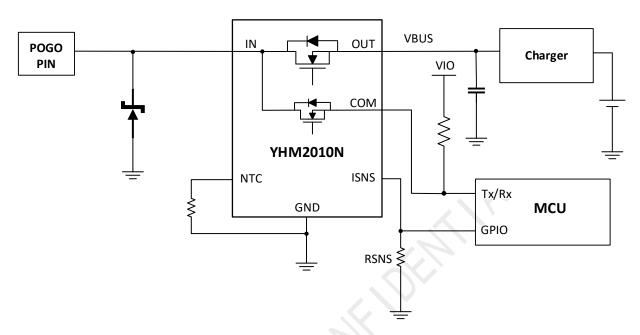


Fig 1. POGO Pin Communication and OVP Application Diagram

Hybrid Switch for OVP/OCP and Communication

Internal Block Diagram

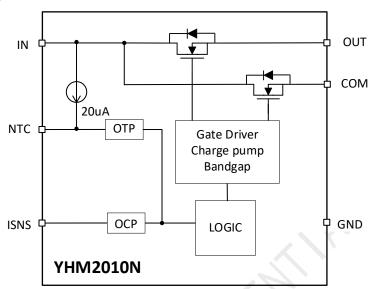


Fig 2. YHM2010N Functional Block Diagram

YHM2010N Hybrid Switch for OVP/OCP and Communication

YHM2010N Pin Configurations

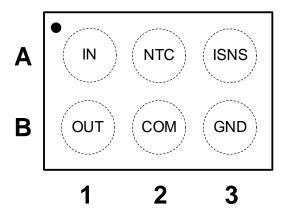


Fig 3. YHM2010N WLP-6 Pin Assignment (Top Through View)

YHM2010N WLP Pin Descriptions

Bump	Name	Description
A1	IN	Power Input.
A2	NTC	Connect NTC for temperature protection or keep floating if not use this function.
A3	ISNS	Connect to system GPIO for communication function.
B1	OUT	Power Output.
B2	COM	Communication Output.
В3	GND	Device Ground.

AUG, 2024 REV1.0 CONFIDENTIAL 4

Hybrid Switch for OVP/OCP and Communication

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
VIN	IN to GND	IN to GND			V
Vout	OUT to GND		-0.3	V _{IN} +0.3	V
VISNS	ISNS to GND		-0.3	6.0	V
I _{IN}	Input Current (Continuous)			2.2	Α
l _{out}	OUT Current			2.2	Α
I _{COM}	COM Current			0.1	Α
t _{PD}	Total Power Dissipation at T _A = 25°C			TBD	W
T _{STG}	Storage Temperature Range			+150	°C
TJ	Maximum Junction Temperature			+150	°C
TL	Lead Temperature (Soldering, 10 Seconds)			+260	°C
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	All Pins	2	±3500	kV
	Charged Device Model, JESD22-C101	All Pins	1	±2000	

Note 1. Refer to JEDEC JESD51-7, use a 4-layerboard

Hybrid Switch for OVP/OCP and Communication

1. Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance.

Parameters		Max.	Unit
Supply Voltage: V _{IN}	3.6	29	V
Supply Voltage: V _{ISNS}	1.6	5.5	V
Ambient Operating Temperature, T _A	-40	85	°C
V _{OUT} Load Capacitor	1	100	μF
Operating Temperature Range	-40	85	°C

2. Detailed Electrical Characteristics

 V_{IN} = 3.6V to 28V, C_{IN} = 0.1 μ F, T_A = -40°C to +85°C, typical values are at V_{IN} = 5V, I_{IN} ≤ 3A, T_A = +25°C, unless otherwise noted.

PARAMETER	SYMBO	CONDITION	MIN	TYP	MAX	UNIT	
INPUT OPERATION							
Input Voltage Range	V _{IN}		3.7		28	V	
Input Supply Current	I _{IN}	V _{IN} = 5V, NTC floating		32		μA	
Under-Voltage Lockout	V _{IN_UVLO}	V _{IN} falling		3.5		V	
Under-Voltage Lockout Hysteresis	V _{IN_HYS}	All I		0.1		V	
OVER-VOLTAGE PROTECTION	ON	(,9)					
OUT OVLO threshold	VIN_OUT_ OVLO	V _{IN} rising		6		V	
OUT Switch On-Resistance	R _{ON1}	V _{IN} = 5V, I _{OUT} = 0.5A, T _A = +25°C		40		mΩ	
ISNS Supply Current	Ivdd	V _{ISNS} = 1.8V, V _{IN} = 1.8V, NTC floating		15		uA	
OVER-CURRENT PROTECTION	ON						
OCP Threshold	locp	R _{SNS} = $5.4k\Omega$, T _A = 25° C		1		Α	
OOI THICSHOID	ТОСР	Accuracy, T _A = 0°C to +65°C	-10%		10%		
OCP Response Time	toce			45		us	
OCP Auto-restart Time	tocp_rst			100		ms	
TIMING CHARACTERISTICS							
Debounce Time	t _{DEB}	De-bounce Time for start rising		3		ms	
Switch Turn-On Time	t _{ON1}	V_{IN} = 5V, R_L = 100 Ω , C_{LOAD} = 100uF, V_{OUT} from 0.1 × V_{IN} to 0.9 × V_{IN}		3		ms	
Switch Turn-Off Time	toff1	$V_{\text{IN}} > V_{\text{IN_OVLO}}$ to $V_{\text{OUT}} = 0.8 \times V_{\text{IN}}$, $R_{\text{L}} = 100\Omega$, V_{IN} rising at $2V/\mu s$		50		ns	
THERMAL SHUTDOWN	•						
Thermal Shutdown				150		°C	
Thermal Shutdown Hysteresis				15		°C	

Note 1: This parameter is guaranteed by design and characterization; not production tested.

Hybrid Switch for OVP/OCP and Communication

4. Detailed Description

4.1 General Introduction

YHM2010N is a dual output over-voltage protection device. One is a low $40m\Omega$ (TYP) on-resistance high current path, the other is 60Ω (TYP) on-resistance communication path. Both the two output can actively protect low-voltage systems against voltage supply faults up to +28VDC. An input voltage exceeding the over-voltage threshold will cause the internal MOSFET to turn off, preventing excessive voltage from damaging downstream devices. The over-voltage protection threshold is default 6V.

YHM2010N device enters hiccup mode when the output load exceeds the over current threshold. The over current threshold is programed by RSNS.

The communication path of COM features 115.2Kbps bandwidth which means the device support digital signal communication when powered by ISNS pin.

4.2 UVLO (Under-Voltage Lockout)

The device has a built-in under-voltage lockout (UVLO) circuit. When VIN is falling, the output remains connected from the input until IN voltage is below 3.5V (TYP). This circuit has a 100mV hysteresis to provide noise immunity to transient conditions.

4.3 OVLO (Over-Voltage Lockout)

When the voltage at the input exceeds OVLO threshold, the device immediately turns off the internal switch disconnecting the load from the abnormal voltage, preventing damage to downstream components. The OVLO threshold is default 6V, and there are trim versions for 11V/16V and 22V OVP.

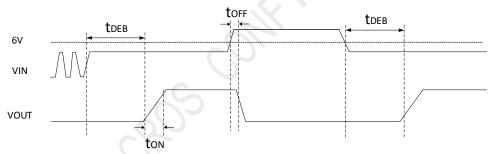


Fig 4. Timing for OVLO trip

4.4 OCP (Over Current Protection)

The chip enters hiccup mode when the output load exceeds the over current threshold. The OCP threshold is 2.35A when ISNS pin is above 1.5V or floating. It also could be adjusted by single external resister RSNS connected between ISNS and GND.

Rsns = 5.4K/ locp

4.5 Communication Functionality

Both IN and ISNS may supply YHM2010N. YHM2010N would be powered by ISNS if ISNS voltage is higher than 1.5V. By this, YHM2010N supports digital signal transmission with level shift function through IN and COM when the device is powered by ISNS. Typically, ISNS is recommended to be driven by GPIO typically. For example, ISNS=1.8V would power YHM2010N even when V_{IN} =0. It is necessary to remove input and output capacitor when communication is required.

4.6 Over Temperature Protection

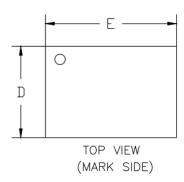
AUG, 2024 REV1.0 CONFIDENTIAL 7

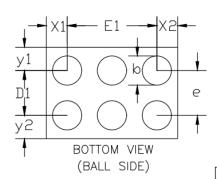
YHM2010N Hybrid Switch for OVP/OCP and Communication

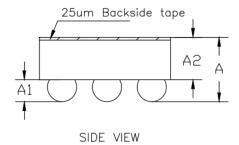
YHM2010N has an internal 20µA current source on NTC pin. When the voltage on NTC pin is below 300mV, the chip turns off. Once turned off, it cannot be turned on until VIN is disconnected and reconnected again. Choose a NTC to program the temperature protection threshold. Recommend 100Kohm NTC (Beta=3950) for 75°C protection. Keep floating if not use this function to save power.

4.7 Thermal Protection

The internal FET turns off when the junction temperature exceeds +150°C (TYP). The device exits thermal shutdown after the junction temperature cools down by 15°C (TYP).


AUG, 2024 REV1.0 CONFIDENTIAL 8




Hybrid Switch for OVP/OCP and Communication

Package Dimensions

WLCSP-6 1.17mm x 0.815mm x 0.574mm

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

(
SYMBOL MIN		NOM	MAX		
A 0.534		0.574	0.614		
A1	0.176	0.196	0.216		
A2	0.358	0.378	0.398		
D	0.795	0.815	0.835		
D1		0.400BSC			
E	1.150	1.170	1.190		
E1		0.800BSC			
b	0.240	0.260	0.280		
е	0.400BSC				
x1	0.185 REF				
x2	0.185 REF				
y1	0.208 REF				
y2	0.208 REF				

Hybrid Switch for OVP/OCP and Communication

Ordering Information

Part Number	Temp Range	Pin Package	Top Mark	MOQ
YHM2010NW6T	-40°C to 85°C	6 WLCSP	YWW LOT	3000

T = Tape and reel.

YWW: Date Code. Y = year, WW = week. LOT: The last three number of LOTID.